Efficient Implementation of Historical Data in DB2

Introduction

Historical Data:
Classification,

A

by
f“+“+"‘+“+3&:"::%:%:%:%:%:‘4‘4‘4
Standard Views : s ¥ ar
' ey &‘!’*‘*"

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of i
a Logical-Unit-of- '
Work

=
L L. —

Anomalies

Conclusion

© Jurgen Glag, 2000 1

Efficient

mplementation of Historical Data in DB2

[Introduction

Historical Data:
Classification,
Standard Views

Index-Design
Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

Anomalies

Conclusion

e Architecture for historization

IS essential
— to meet future demands

— otherwise application development
tasks cannot be automatized

— advantages for maintenance

 Efficiency Is required

— volume of stored data will increase at
least by a factor of 10 in the next years

— we must be able to backup/restore
huge tables

© Jurgen Glag, 2000

Efficient

mplementation of Historical Data in DB2

[Introduction

Historical Data:
Classification,
Standard Views

Index-Design
Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

Anomalies

Conclusion

/ » We shall learn ...

— about standardized
maintenance of historical
data

— about implementation of
data-access-modules

— about the maintenance of a
logical-unit-of-work (LUOW)

— how to organize things
efficiently

© Jurgen Glag, 2000

Efficient

mplementation of Historical Data in DB2

Introduction

Historical Data:
Classification,
Standard Views

~

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

Anomalies

Conclusion

Terminology Architecture Dimensions Control Fields Logbook View Valigd Data View
—F—
— Business Ob ject: nE _
» group of related data structures (=tables) e

— logical Unit of Work (LUOW):
» summary of changes to one or more business-objects
» generalized UOW

— Control field:
» used to maintain relevant views on historical data in tables

— Status:
» control field to support transaction-independent UOW's

© Jurgen Glag, 2000

Efficient

mplementation of Historical Data in DB2

Introduction

Terminology

Historical Data:
Classification,
Standard Views

~

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

Anomalies

Conclusion

Architecture

O

Dimensions

C

bntrol Fields

Log

jbook View Vali+ Data View

© Jurgen Glag, 2000

Efficient

mplementation of Historical Data in DB2

Introduction

Terminology Architecture Dimensions Control Fields Logbook View Valig

| Data View

Historical Data:
Classification,
Standard Views

~

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

Anomalies

Conclusion

— When did the lo gical-Unit-of-Work take place?
— For which Interval of Time are the Data valid?

date

27.03.2000

14.02.2000

12.12.1999

01.01.2000 01.03.2000 01.04.2000

valid

© Jurgen Glag, 2000

Efficient

mplementation of Historical Data in DB2

Introduction

Terminology

Architecture Dimensions Control Fields Logbook View Valig

| Data View

Historical Data:
Classification,
Standard Views

~

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

Anomalies

Conclusion

— Implementation:

— Benefits:

» No separate table(s) for "work data" ,

l.e. integration into the original application tables

» usage of status-field
» row-wise historization

» high efficiency for retrieval
« only one table is affected
» "simple" SQL-statements
» less expensive at commit / rollback

« COMMIT: "~
UPDATE instead of DELETE/INS

« ROLLBACK: DELETE

ERT

© Jurgen Glag, 2000

Efficient

mplementation of Historical Data in DB2

Introduction

Terminology Architecture

Dimensions Control Fields Logbook View

Valigl Data View

Historical Data:
Classification,
Standard Views

~

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

Anomalies

Conclusion

— LU_START:

— VALID_FROM:

— VALID_TO:

— INVALIDATED_BY:

— LU_COMMIT:

— STATUS:

start of a logical-unit-of-work

data is valid from ...

data is valid until ...

data is made invalid
by the logical-unit-of-work

commit-date of the
logical-unit-of-work

status of the
logical-unit-of-work

TIMESTAMP

DATE

DATE

TIMESTAMP

DATE

CHAR(1)

© Jurgen Glag, 2000

Efficient Implementation of Historical Data in DB2
Terminology Architecture Dimensions Control Fields Logbook View Valigl Data View
Introduction
N
Historical Data:
Classification, * StatUS
Standard Views
Index-Design — A: work data,
rows can be inserted, updated or deleted
I\D/Iitj:ﬁcsc_ess' "uncommitted" from the business point-of-view
Basic/Advanced
Functionality
Storage — B: made permanent,
Considerations can't be changed any more
"committed" from the business point-of-view
Implementation of
a Logical-Unit-of-
Work
. - X: for information only,
Anomalies " - "o,
not relevant for the "valid data"-view
Conclusion

© Jurgen Glag, 2000

Efficient

mplementation of Historical Data in DB2

Introduction

Terminology

Architecture Dimensions

(

Control Fields

Lq

Historical Data:
Classification,
Standard Views

~

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

Anomalies

Conclusion

— "work data" is included

SELECT

FROM table

WHERE id = :hv-id
ORDER BY LU_start DESC

,valid_from DESC

gbook View Valig Data View

— development of data, from now back to the be ginnin g
(descendin g time order)

— Cursor from the business point of view

© Jurgen Glag, 2000

10

Efficient

mplementation of Historical Data in DB2

Introduction

Terminology

Architecture

Dimensions Control Fields

Log

jbook Cursor

Val

Historical Data:
Classification,
Standard Views

~

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

Anomalies

Conclusion

— (valid) state of business data at a

— exclusion of "work data ",
l.e. "uncommitted" data from the business point of view

— only one "document" from the business point of view

SELECT

FROM table

WHERE id = :hv-id

AND LU_start <= :hv-sight
AND valid_from <= :hv-valid
AND valid to >=:hv-valid
AND invalidated by >=:hv-sight
AND LU _commit <= :hv-sight
AND status ='B'

ORDER BY LU_start DESC

,valid_from DESC

given time

d Data View

© Jurgen Glag, 2000

11

Efficient Implementation of Historical Data in DB2

Introduction

Historical Data: e Choosin g the Clusterin g Index

Classification,
Standard Views

| ndex-Desigr _ "Valid data” view
Data-Access. » business point of view: singleton select
Modules: » SQL point of view: no singleton select
Basic/Advanced no subselect
Functionality but: ordered cursor with only one fetch
Storage . N
Considerations — "Lo gbook" view
» business point of view: ordered cursor

Implementation of
a Logical-Unit-of-
Work

» SQL point of view: ordered cursor

Anomalies

Conclusion

© Jurgen Glag, 2000

Efficient Implementation of Historical Data in DB2

Introduction

— Avoid SORT:

Historical Data: You never know the cardinality of the result-set
Classification,

Standard Views

Z

[. — Clusterin g Index for both views:
Index-Design

y » CREATE UNIQUE INDEX ... ON table

Data-Access- (id asc
Modules: ,LU_start desc
Basic/Advanced valid_from desc)
Functionality ’CLUS_TER
Storage
Considerations — Clusterin g Index satisfies:
Implementation of » unigueness
a Logical-Unit-of- . :
Work » logbook view, no sort required !

» valid data view, no sort required !
Anomalies
Conclusion

© Jurgen Glag, 2000 13

Efficient

mplementation of Historical Data in DB2

Introduction
Historical Data:
Classification,
Standard Views

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

Anomalies

Conclusion

Data Access Functions for Single Table Links between Tables

e Basic Functions
— INSERT, UPDATEDELETEoONe row with status "A"

— UPDATEaIl rows for a given id and LU _start with status "A",
set the status to "B" or "X"

— DELETEall rows for a given id and LU _start with status "A"

— logbook view

— valid data view

— for every (technical) cursor supply the following functions:
» OPEN

» OPEN FETCHnN rows

» OPEN FETCHnN rows, CLOSE
» FETCHN rows

» FETCHnN rows, CLOSE

» CLOSE

© Jurgen Glag, 2000

14

Efficient Implementation of Historical Data in DB2

Data Access Functions for Single Table Links between Tables

Introduction

Historical Data:

Classification, Advanced Functions
Standard Views _ _
— 1d consists of more than one column

Index-Design
Data-Access-) CREATE UNIQUE INDEX ... ON table
Modules: (id_a asc
Basic/Advanced id b asc
Functionality) ,id:C asc
Storage ,LU_start desc
Considerations ,valid_from desc)
CLUSTER
Impl tation of :
2 Logioal Unit of — advanced functions, but often needed:
Work » return all latest=newest data for id_a (all statuses)
Anomalies » retur all current valid/committed data for id_a

(status "B" only)
Conclusion

© Jurgen Glag, 2000

Efficient

mplementation of Historical Data in DB2

Introduction
Historical Data:
Classification,
Standard Views

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

Anomalies

Conclusion

o>

=
=

Data Access Functions for Single Table

 Advanced Functions

Links between Tables

bu

id a id b id_c start

4711
4711
4711
4711
4711
4711
4711
4711
4711
4711
4711

NN R RP R R R RPE

1 1995-12-20-00.00.(
1 1995-09-26-00.00.(
1 1995-07-03-00.00.(
1/ 1994-12-20-00.00.(
1 1994-10-20-00.00.(
2 1995-12-20-00.00.(
2/1994-12-20-00.00.(
2/1994-10-20-00.00.(
1 1995-12-20-00.00.(
1 1995-08-15-00.00.(
1 1995-06-15-00.00.(

valid_

from
1996-01-01
1995-10-01
1995-08-01
1995-01-01
1994-11-01
1996-01-01
1995-01-01
1994-11-01
1996-02-01
1995-09-01
1995-07-01

valid_
to

9999-12-31
9999-12-31
9999-12-31
9999-12-31
9999-12-31
9999-12-31
9999-12-31
9999-12-31
9999-12-31
9999-12-31
9999-12-31

invalidated bu_

by commit
0001-01-01-00.00.(1995-12-20-0C A
0001-01-01-00.00.(1995-09-26-0(B
0001-01-01-00.00.(1995-07-03-0(B
0001-01-01-00.00.(1994-12-20-0(X
0001-01-01-00.00.(1994-10-20-0(B
0001-01-01-00.00.(1995-12-20-0(B
0001-01-01-00.00.(1994-12-20-0(B
0001-01-01-00.00.(1994-10-20-0(B
0001-01-01-00.00.(1995-12-20-0C A
0001-01-01-00.00.(1995-09-01 B
0001-01-01-00.00.(1995-07-01 B

statu

user data
doesn't matter here
doesn't matter here
doesn't matter here
doesn't matter here
doesn't matter here
doesn't matter here
doesn't matter here
doesn't matter here
doesn't matter here
doesn't matter here
doesn't matter here

© Jurgen Glag, 2000

16

Efficient

mplementation of Historical Data in DB2

Introduction
Historical Data:
Classification,
Standard Views

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

/

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

Anomalies

Conclusion

Data Access Functions for Single Table Links between Tables

 Advanced Functions

— return the latest data for id_a:
» DECLARE cursor
» only id_a is qualified
» filter the desired rows in the application program

SELECT ...
FROM tablet
WHERE tl.id a =:hv-id-a
ORDER BY tl1.id_b
tl.id c
{1.LU_ start DESC
,tl.valid_from DESC

» simple SQL-statement

» prefetch may be used if desired

© Jurgen Glag, 2000

17

Efficient

mplementation of Historical Data in DB2

Introduction
Historical Data:
Classification,
Standard Views

Index-Design

Data Access Functions for Single Table

| inks between Tables

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

Anomalies

Conclusion

— business ob ject:

group of related data structures (=tables)

— Examples:

» orders and order-positions

» Insurance contracts and risks

» claim and associated payments
» banking-account and positions

— Efficienc y

» new rows are inserted only in
those tables with changed data

» Nno complete new copy of the

business object

BUSINESS OBJECT

TABLE | | TABLE | |TABLE

TABLE TABLE

© Jurgen Glag, 2000

18

Efficient

mplementation of Historical Data in DB2

Introduction
Historical Data:
Classification,
Standard Views

Index-Design

Data Access Functions for Single Table _inks between Tables

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

Anomalies

Conclusion

— business ob ject: group of related data structures (=tables)
— this fact should be visible in the ke y-definition

— consequence: BUSINESS OBJECT
|

» use of generic keys ' ' '

» "root"-table: 1-column key=index I

TABLE | | TABLE | | TABLE
if possible: good distribution of key TABLE TATLE

» "child"-tables inherit the parent key

» child-key consists of one additional column
for uniqueness

— benefits:
» easier control of a logical-unit-of-work

» easier control of a business object,
only one generic key reqg'd

» less physical 1/O for advanced functions .. =%

© Jurgen Glag, 2000

19

Efficient Implementation of Historical Data in DB2

Storing a Table on Different Devices Arguments for particular Devices
Introduction
Historical Data:
Classification,
Standard Views — High-speed devices: 3390-3
Index-Design RAMACS
— Medium-speed devices: 3390-9

Data-Access- _ _ _
Modules: — Low-speed devices: Optical disc @
Basic/Advanced : —pe— . .
Functionality — No-speed-device: are data still required?

y
Storage speed of device amount of data
Considerations

y

Implementation of
a Logical-Unit-of-
Work

Anomalies

Conclusion

© Jurgen Glag, 2000 20

Efficient

mplementation of Historical Data in DB2

Introduction

Historical Data:
Classification,
Standard Views

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storing a Table on Different Devices Arguments for particular Devices

|

Storage
Considerations

y

Implementation of
a Logical-Unit-of-
Work

Anomalies

Conclusion

p(access)
— the 80/20-rule also applies here:

» 80% old data = 20% access probability
» 20% new data = 80% access probability

new old

— Rule-of-Thumb:

» 20% of data on the fastest (= most expensive) devices
always status = "A", the newest status = "B"
lowest possible index-level at the fastest device

» 50 % of data on medium-speed-devices
consider compression, low probability of changes

» 30 % of data on low-speed-devices

e Devices must be transparent to the application
— another reason for data-acess-modules

© Jurgen Glag, 2000

21

Efficient

mplementation of Historical Data in DB2

Introduction

Historical Data:
Classification,
Standard Views

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storing a Table on Different Devices

Arguments for particular Devices

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

Anomalies

Conclusion

 Code-Example: lo gbook view on a table

OPEN c1-fast

FETCH cl-fast

PERFORM UNTIL SQLCODE <> ZERO
process data
FETCH cl-fast

END-PERFORM

IF SQLCODE =100
CLOSE cl-fast

END-IF

move zero to count-cl-medium
OPEN c1-medium
FETCH cl-medium
PERFORM UNTIL SQLCODE <> ZERO
add 1 to count-c1-medium
process data
FETCH cl-medium
END-PERFORM
IF SQLCODE =100
CLOSE cl1-medium
END-IF

IF count-c1-medium > zero
OPEN c1l-optical
FETCH cl-optical
PERFORM UNTIL SQLCODE <> ZERO
process data
FETCH cl-optical
END-PERFORM
IF SQLCODE =100
CLOSE cl-optical
END-IF
END-IF

© Jurgen Glag, 2000

Efficient

mplementation of Historical Data in DB2

Introduction

Historical Data:
Classification,
Standard Views

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

~

Anomalies

Conclusion

Properties

Functions for a Business-Unit-of-Work

Begin Business-Unit-of-Work

OPEN Logical-Unit-of-Work #1

COMMIT/ROLLBACK Logical-Unit-of-Work #1

Business- Unit-of-Work:

OPEN Logical-Unit-of-Work #2

OPEN Logical-Unit-of-Work #3

OPEN Logical-Unit-of-Work #4

COMMIT Logical-Unit-of-Work #4

OPEN Logical-Unit-of-Work #5

COMMIT Logical-Unit-of-Work #5

COMMIT Logical-Unit-of-Work #3

COMMIT Logical-Unit-of-Work #2

End Business-Unit-of-Work

» multiple Logical-Unit-of-Work
» nested Logical-Unit-of-Work
 suspend/resume at every point
e transaction independent

e common identifier, i.e. LU_start
» modification of multiple BO's

» Exactly one status at every time

© Jurgen Glag, 2000

23

Efficient

mplementation of Historical Data in DB2

Introduction

Properties

Functions for a Business-Unit-of-Work

OPEN logical-Unit-of-Work

Historical Data: CET Global-Change-Log Business-Objekt #1 i ' HH
Classification, 9609 : Uniiogfs\'/-ork - fHH]

] - - L) LLLLL “‘I’H
Standard Views GET Business-Objekt #1 [t U [

LOCK Business-Objekt #1 [
Index-Design T
GET Global-Change-Log-Business-Objekt #2 read/ i
Data-Access- GET Global-Change-Log-Business-Objekt #3 modify
Modules: LOCK Business-Objekt #2
Basic/Advanced LOCK Business-Objekt #3 —
Functionality GET Business-Objekt #2 Business-Objects B
i
Storage CHANGE Business-Objekt #1
Considerations
. A UNTERBRECHUNG |
Implementation of built of
a Logical-Unit-of-
Work y CHANGE Business-Objekt #2
Anomalies .
. COMMIT/ROLLBACK Logical-Unit-of-Work -

Conclusion
© Jurgen Glag, 2000 24

Efficient

mplementation of Historical Data in DB2

Introduction

Historical Data:
Classification,
Standard Views

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Properties

Implementation of
a Logical-Unit-of-
Work

~

Anomalies

Conclusion

Functions for a Business-Unit-of-Work

Control Functions for a Lo gical-Unit-of-Work

— OPEN LUOW
» Reservation of a system-wide timestamp
» timestamp is made permanent in a control-table

— COMMIT LUOW
» status of all rows belonging to the LUOW is changed to "B"
» previous status must be "A"

— ROLLBACK LUOW
» all rows belonging to the LUOW are deleted

» status of the LUOW must be "A"

© Jurgen Glag, 2000

25

Efficient

mplementation of Historical Data in DB2

Introduction

Historical Data:
Classification,
Standard Views

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Properties

Implementation of
a Logical-Unit-of-
Work

~

Anomalies

Conclusion

Functions for a Business-Unit-of-Work

Logical lockin g of Business Ob jects (BO) in a LUOW

— LOCK BO
» explicit lock issued by application
» no data changes required
» with data changes BO is locked implicitly

— INQUIRE BO
» function returns if a logical lock is held on a BO

— RELEASE BO
» reset of an explicit logical lock
» Nno changes to BO allowed

© Jurgen Glag, 2000

26

Efficient

mplementation of Historical Data in DB2

Introduction

Historical Data:
Classification,
Standard Views

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Properties Functions for a Business-Unit-of-Work

Implementation of
a Logical-Unit-of-
Work

~

Anomalies

Conclusion

« BO-"folder" for better efficiency
— recommended, but not a must
— contains complete history of BO since beginning

Reason: no complete copy of BO available

 Control-table for OPEN LUOW

— one column only: LU_start_iv CHAR(10),

contains inverted timestamp

~——
| m—
>}
~—
—
>}
) S—
| se— | |
>}

— avoids a hot-spot

— ensures system-wide uniqueness of LUOW identifier

» Control-table for LUOW "logging"

— (id-container, business_object, LU_start _iv, status, table-container)

— no hot-spot

— protocol of every change on business objects, system wide logging

— table is needed for efficient commit/rollback
entries can be deleted after commit/rollback

— also used to lock business objects

© Jurgen Glag, 2000

27

Efficient

mplementation of Historical Data in DB2

Introduction

Historical Data:
Classification,
Standard Views

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

[Anomalies

Conclusion

ALTER TABLE

Structure Change of Business-Object

Architecture makes things easier

FOLDER:

LuowY
handler

control
tables

© Jurgen Glag, 2000

28

Efficient

mplementation of Historical Data in DB2

Introduction

Historical Data:
Classification,
Standard Views

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

[Anomalies

Conclusion

ALTER TABLE Structure Change of Business-Object

« ALTER TABLE

— e.g. add column

— ALTER table on the fastest device

— new views for the other tables

— reqg'd changes:
» table abstraction layer: extended mapping
» data-access-module: extended interface

© Jurgen Glag, 2000

29

Efficient

mplementation of Historical Data in DB2

Introduction

Historical Data:
Classification,
Standard Views

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

ALTER TABLE

Structure Change of Business-Object

— Table Abstraction La yer in detail:
» mapping between business-objects and tables
» recommendation: keep the mapping as simple as possible

BUSINESS OBJECT

—F—

TABLE | |TABLE | |TABLE

TABLE TABLE

TABLE

BUSINESS OBJECT

—F—

TABLE | |TABLE | |TABLE

TABLE TABLE TABLE

TABLE

BUSINESS OBJECT

—F—

TABLE | |TABLE | |TABLE

TABLE TABLE

TABLE

BUSINESS OBJECT

—F—

TABLE | |TABLE | |TABLE

TABLE

TABLE

Table Abstraction Layer

mapping

tables

[Anomalies

Conclusion

data access module
i"

data access module
i* iy

data access module
i"

© Jurgen Glag, 2000

30

Efficient

mplementation of Historical Data in DB2

Introduction

Historical Data:
Classification,
Standard Views

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

Anomalies

[Conclusion

© Jurgen Glag, 2000

standardize control-fields and
related functions

implement data-access-modules
» should be generated

» ideal, but not a must:
should be enabled to use
different devices

implement logical-Unit-of-Work

concept and implementation of
using different devices

» define a ruleset to move
outdated data to other devices

mind the volume of data:
be in practise with backup/restore

31

Efficient

mplementation of Historical Data in DB2

Introduction

Historical Data:
Classification,
Standard Views

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

Anomalies

[Conclusion

e We wanted to learn ...

— about standardized maintenance " T
of historical data '
=P control-fields

— about implementation of
data-access-modules
= flexibilit y, control

— about the maintenance of a
logical-unit-of-work

(LUOW)
functions -~ -] iy .
= control data o T

— how to do organize efficiently

© Jurgen Glag, 2000

32

Efficient Implementation of Historical Data. in.DB2

Introduction

Historical Data:
Classification,
Standard Views

g
= 4
L
o+ +++++++++++++++

Index-Design

Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of B

. . ;;l.‘h“"..'.' Lol b b
a Logical-Unit-of- Bt

Work

Anomalies

Conclusion

© Jurgen Glag, 2000

Efficient

mplementation of Historical Data in DB2

Introduction

Historical Data:
Classification,
Standard Views

Index-Design
Data-Access-
Modules:
Basic/Advanced
Functionality

Storage
Considerations

Implementation of
a Logical-Unit-of-
Work

Anomalies

Conclusion

Jirgen Glag Consulting

Brucknerstrasse 38
D-40822 Mettmann

Germany

Questions

phone: +49 172 2420393
fax: +49 2104 916075
email; jglag@glag-consult.de

http://www.glag-consult.de

© Jurgen Glag, 2000

34

